Kamis, 19 Mei 2011

BARISAN DAN DERET

Definisi Barisan :
Barisan adalah daftar urutan bilangan dari kiri ke kanan yang mempunyai karakteristik atau pola tertentu. Setiap bilangan dalam barisan merupakan suku dalam barisan. 

Contoh :
1,2,3,4,5,6,…,…,…,…,… dst
2,4,6,8,10,12,…,…,…,… dst

Definisi deret :
Penjumlahan suku-suku dari suatu barisan disebut deret. Jika U1,U2,U3,…..Un maka U1 + U2 + U3 +… +Un adalah deret.

Contoh :
1 + 2 + 3 + 4 +… + Un
2 + 4 + 6 + 8 +… + Un

A.    Baris dan Deret Aritmatika

Definisi baris aritmatika :
Jika beda antara suatu suku apa saja dalam suatu barisan dengan suku sebelumnya adalah suatu bilangan tetap b maka barisan ini adalah barisan aritmatika. Bilangan tetap b itu dinamakan beda dari barisan.

Polanya : a, a+b, a+2b, a+3b,…..,a+(n-1)b
Dengan
o   a = U1= Suku pertama       
o   b = beda
o   n = banyaknya suku
o   Un = Suku ke-n
 

Suku pertamanya adalah 3 (a=3) dan bedanya adalah 2 (b=2), banyaknya suku ada 5 (n=5), suku ke-5 adalah 11 (U5 = 11).

Deret aritmatika adalah jumlah dari baris aritmatika.
            Contoh : 3 + 5 + 7 + 9 + 11   
o   Ut = Suku tengah
o   Sn = Jumlah n suku pertama  

Berikut adalah cara untk mengetahui nilai dari beberapa hal yang disebut di atas :
·         Beda
b = Un – Un-1
·         Suku ke-n
Un = a + (n-1)b
Un = Sn – Sn-1
·         Jumlah n suku pertama
Sn = ½ n (U1 + Un)
Sn = ½ n ( 2a + (n-1)b )
·         Nilai tengah
Ut = ½ (U1 + Un)


B.     BARIS DAN DERET GEOMETRI

Definisi barisan geometri :
            Jika rasio antara suku apa saja dalam suatu barisan dengan suku sebelumnya merupakan suatu bilangan tetap r maka barisan tersebut adalah barisan geometri.bilangan tetap r disebut rasio dari barisan.

Contoh :
2,6,18,48….. adalah barisan geometri dengan rasio 3. Artinya adalah nilai pada Un = 3Un-1.
           

Definisi deret geometri :
Jika U1,U2,U3,…..Un adalah barisan geometri maka jumlah U1 + U2 + U3 +… +Un disebut deret geometri.

Rumus jumlah n suku pertama dari deret geometri adalah :
            Sn = a( 1- rn ) / 1 – r , jika r < 1 dan
                        Sn = a( rn - 1) / r – 1 , jika r > 1
»»  READMORE...

INTEGRAL

A. KONSEP TURUNAN
Di Kelas XI, kalian telah mempelajari konsep turunan. Pemahaman tentang konsep turunan ini dapat kalian gunakan untuk memahami konsep integral. Untuk itu, coba tentukan turunan fungsi-fungsi berikut.



B. INTEGRAL TAK TENTU

Sehingga kalian dapat memandang integral tak tentu sebagai wakil keseluruhan keluarga fungsi (satu antiturunan untuk setiap nilai konstanta c). Pengertian tersebut dapat digunakan untuk membuktikan teorema- teorema berikut yang akan membantu dalam pengerjaan hitung integral.




1. Aturan Integral Substitusi
Aturan integral substitusi seperti yang tertulis di Teorema 5. Aturan ini digunakan untuk memecahkan masalah pengintegralan yang tidak dapat diselesaikan dengan rumus-rumus dasar yang sudah dipelajari.
2. Aturan Integral Substitusi Trigonometri
»»  READMORE...

REAKSI REDOKS DAN ELEKTROKIMIA


Elektrokimia I : Penyetaraan Reaksi Redoks dan Sel Volta


Dalam tulisan ini, kita akan mempelajari dasar-dasar reaksi redoks, mempelajari cara menyetarakan reaksi redoks dengan metode perubahan bilangan oksidasi dan metode setengah reaksi, serta mempelajari seluk-beluk tentang sel volta dan aplikasinya dalam kehidupan sehari-hari.
Reaksi Redoks adalah reaksi yang didalamnya terjadi perpindahan elektron secara berurutan dari satu spesies kimia ke spesies kimia lainnya, yang sesungguhnya terdiri atas dua reaksi yang berbeda, yaitu oksidasi (kehilangan elektron) dan reduksi (memperoleh elektron). Reaksi ini merupakan pasangan, sebab elektron yang hilang pada reaksi oksidasi sama dengan elektron yang diperoleh pada reaksi reduksi. Masing-masing reaksi (oksidasi dan reduksi) disebut reaksi paruh (setengah reaksi), sebab diperlukan dua setengah reaksi ini untuk membentuk sebuah reaksi dan reaksi keseluruhannya disebut reaksi redoks.
Ada tiga definisi yang dapat digunakan untuk oksidasi, yaitu kehilangan elektron, memperoleh oksigen, atau kehilangan hidrogen. Dalam pembahasan ini, kita menggunakan definisi kehilangan elektron. Sementara definisi lainnya berguna saat menjelaskan proses fotosintesis dan pembakaran.
Oksidasi adalah reaksi dimana suatu senyawa kimia kehilangan elektron selama perubahan dari reaktan menjadi produk. Sebagai contoh, ketika logam Kalium bereaksi dengan gas Klorin membentuk garam Kalium Klorida (KCl), logam Kalium kehilangan satu elektron yang kemudian akan digunakan oleh klorin. Reaksi yang terjadi adalah sebagai berikut :
K —–> K+ + e-
Ketika Kalium kehilangan elektron, para kimiawan mengatakan bahwa logam Kalium itu telah teroksidasi menjadi kation Kalium.
Seperti halnya oksidasi, ada tiga definisi yang dapat digunakan untuk menjelaskan reduksi, yaitu memperoleh elektron, kehilangan oksigen, atau memperoleh hidrogen. Reduksi sering dilihat sebagai proses memperoleh elektron. Sebagai contoh, pada proses penyepuhan perak pada perabot rumah tangga, kation perak direduksi menjadi logam perak dengan cara memperoleh elektron. Reaksi yang terjadi adalah sebagai berikut :
Ag+ + e- ——> Ag
Ketika mendapatkan elektron, para kimiawan mengatakan bahwa kation perak telah tereduksi menjadi logam perak.
Baik oksidasi maupun reduksi tidak dapat terjadi sendiri, harus keduanya. Ketika elektron tersebut hilang, sesuatu harus mendapatkannya. Sebagai contoh, reaksi yang terjadi antara logam seng dengan larutan tembaga (II) sulfat dapat dinyatakan dalam persamaan reaksi berikut :
Zn(s) + CuSO4(aq) ——> ZnSO4(aq) + Cu(s)
Zn(s) + Cu2+(aq) ——> Zn2+(aq) + Cu(s) (persamaan ion bersih)
Sebenarnya, reaksi keseluruhannya terdiri atas dua reaksi paruh :
Zn(s) ——> Zn2+(aq) + 2e-
Cu2+(aq) + 2e- ——> Cu(s)
Logam seng kehilangan dua elektron, sedangkan kation tembaga (II) mendapatkan dua elektron yang sama. Logam seng teroksidasi. Tetapi, tanpa adanya kation tembaga (II), tidak akan terjadi suatu apa pun. Kation tembaga (II) disebut zat pengoksidasi (oksidator). Oksidator menerima elektron yang berasal dari spesies kimia yang telah teroksidasi.

Sementara kation tembaga (II) tereduksi karena mendapatkan elektron. Spesies yang memberikan elektron disebut zat pereduksi (reduktor). Dalam hal ini, reduktornya adalah logam seng. Dengan demikian, oksidator adalah spesies yang tereduksi dan reduktor adalah spesies yang teroksidasi. Baik oksidator maupun reduktor berada di ruas kiri (reaktan) persamaan redoks.
Elektrokimia adalah salah satu dari cabang ilmu kimia yang mengkaji tentang perubahan bentuk energi listrik menjadi energi kimia dan sebaliknya. Proses elektrokimia melibatkan reaksi redoks. Proses transfer elektron akan menghasilkan sejumlah energi listrik. Aplikasi elektrokimia dapat diterapkan dalam dua jenis sel, yaitu sel volta dan sel elektrolisis. Sebelum membahas kedua jenis sel tersebut, kita terlebih dahulu akan mempelajari metode penyetaraan reaksi redoks.
Persamaan reaksi redoks biasanya sangat kompleks, sehingga metode penyeteraan reaksi kimia biasa tidak dapat diterapkan dengan baik. Dengan demikian, para kimiawan mengembangkan dua metode untuk menyetarakan persamaan redoks. Salah satu metode disebut metode perubahan bilangan oksidasi (PBO), yang berdasarkan pada perubahan bilangan oksidasi yang terjadi selama reaksi. Metode lain, disebut metode setengah reaksi (metode ion-elektron). Metode ini melibatkan dua buah reaksi paruh, yang kemudian digabungkan menjadi reaksi redoks keseluruhan.
Berikut ini penjelasan sekilas tentang metode setengah reaksi : persamaan redoks yang belum setara diubah menjadi persamaan ion dan kemudian dipecah menjadi dua reaksi paruh, yaitu reaksi oksidasi dan reaksi reduksi; setiap reaksi paruh ini disetarakan dengan terpisah dan kemudian digabungkan untuk menghasilkan ion yang telah disetarakan; akhirnya, ion-ion pengamat kembali dimasukkan ke persamaan ion yang telah disetarakan, mengubah reaksi menjadi bentuk molekulnya.
Sebagai contoh, saya akan menjelaskan langkah-langkah untuk menyetarakan persamaan redoks berikut :
Fe2+(aq) + Cr2O72-(aq) ——> Fe3+(aq) + Cr3+(aq)
1. Menuliskan persamaan reaksi keseluruhan
Fe2+ + Cr2O72- ——> Fe3+ + Cr3+
2. Membagi reaksi menjadi dua reaksi paruh
Fe2+ ——> Fe3+
Cr2O72- ——> Cr3+
3. Menyetarakan jenis atom dan jumlah atom dan muatan pada masing-masing setengah reaksi; dalam suasana asam, tambahkan H2O untuk menyetarakan atom O dan H+ untuk menyetarakan atom H
Fe2+ ——> Fe3+ + e-
6 e- + 14 H+ + Cr2O72- ——> 2 Cr3+ + 7 H2O
4. Menjumlahkan kedua setengah reaksi; elektron pada kedua sisi harus saling meniadakan; jika oksidasi dan reduksi memiliki jumlah elektron yang berbeda, maka harus disamakan terlebih dahulu
6 Fe2+ ——> 6 Fe3+ + 6 e- ……………… (1)
6 e- + 14 H+ + Cr2O72- ——> 2 Cr3+ + 7 H2O ……………… (2)
6 Fe2+ + 14 H+ + Cr2O72- ——> 6 Fe3+ + 2 Cr3+ + 7 H2O ………………… [(1) + (2)]
5. Mengecek kembali dan yakin bahwa kedua ruas memiliki jenis atom dan jumlah atom yang sama, serta memiliki muatan yang sama pada kedua ruas persamaan reaksi
Untuk reaksi yang berlangsung dalam suasana basa, tambahkan ion OH- dalam jumlah yang sama dengan ion H+ pada masing-masing ruas untuk menghilangkan ion H+. Persamaan reaksi tersebut berubah menjadi sebagai berikut :
6 Fe2+ + 14 H+ + 14 OH- + Cr2O72- ——> 6 Fe3+ + 2 Cr3+ + 7 H2O + 14 OH-
6 Fe2+ + 14 H2O + Cr2O72- ——> 6 Fe3+ + 2 Cr3+ + 7 H2O + 14 OH-
6 Fe2+ + 7 H2O + Cr2O72- ——> 6 Fe3+ + 2 Cr3+ + 14 OH-
Berikut ini adalah contoh lain penyelesaian penyetaraan persamaan reaksi redoks :
Cu(s) + HNO3(aq) ——> Cu(NO3)2(aq) + NO(g) + H2O(l)
1. Mengubah reaksi redoks yang belum disetarakan menjadi bentuk ion
Cu + H+ + NO3- ——> Cu2+ + 2 NO3- + NO + H2O
2. Menentukan bilangan oksidasi dan menuliskan dua setengah reaksi (oksidasi dan reduksi) yang menunjukkan spesies kimia yang telah mengalami perubahan bilangan oksidasi
Cu ——> Cu2+
NO3- ——> NO
3. Menyetarakan semua atom, dengan pengecualian untuk oksigen dan hidrogen
Cu ——> Cu2+
NO3- ——> NO
4. Menyetarakan atom oksigen dengan menambahkan H2O pada ruas yang kekurangan oksigen
Cu ——> Cu2+
NO3- ——> NO + 2 H2O
5. Menyetarakan atom hidrogen dengan menambahkan H+ pada ruas yang kekurangan hidrogen
Cu ——> Cu2+
4 H+ + NO3- ——> NO + 2 H2O
6. Menyetarakan muatan ion pada setiap ruas setengah reaksi dengan menambahkan elektron
Cu ——> Cu2+ + 2 e-
3 e- + 4 H+ + NO3- ——> NO + 2 H2O
7. Menyetarakan kehilangan elektron dengan perolehan elektron antara kedua setengah reaksi
3 Cu ——> 3 Cu2+ + 6 e-
6 e- + 8 H+ + 2 NO3- ——> 2 NO + 4 H2O
8. Menggabungkan kedua reaksi paruh tersebut dan menghilangkan spesi yang sama di kedua sisi; elektron selalu harus dihilangkan (jumlah elektron di kedua sisi harus sama)
3 Cu ——> 3 Cu2+ + 6 e- …………………….. (1)
6 e- + 8 H+ + 2 NO3 ——> 2 NO + 4 H2O …………………….. (2)
3 Cu + 8 H+ + 2 NO3- ——> 3 Cu2+ + 2 NO + 4 H2O …………………………….. [(1) + (2)]
9. Mengubah persamaan reaksi kembali ke bentuk molekulnya dengan menambahkan ion pengamat
3 Cu + 8 H+ + 2 NO3- + 6 NO3- ——> 3 Cu2+ + 2 NO + 4 H2O + 6 NO3-
3 Cu + 8 HNO3 ——> 3 Cu(NO3)2 + 2 NO + 4 H2O
10. Memeriksa kembali untuk meyakinkan bahwa semua atomnya telah setara, semua muatannya telah setara, dan semua koefisiennya ada dalam bentuk bilangan bulat terkecil
Metode lain yang digunakan dalam menyetarakan persamaan reaksi redoks adalah metode perubahan bilangan oksidasi (PBO). Saya akan menjelaskan langkah-langkah penyetaraan reaksi redoks dengan metode PBO melalu contoh berikut :
MnO4-(aq) + C2O42-(aq) ——> Mn2+(aq) + CO2(g)
1. Menentukan bilangan oksidasi masing-masing unsur
MnO4- + C2O42- ——> Mn2+ + CO2
+7 -2 +3 -2 +2 +4 -2
2. Menentukan unsur yang mengalami perubahan bilangan oksidasi serta besarnya perubahan bilangan oksidasi
Mn mengalami perubahan bilangan oksidasi dari +7 menjadi +2; besarnya perubahan bilangan oksidasi (Δ) sebesar 5
C mengalami perubahan bilangan oksidasi dari +3 menjadi +4; besarnya perubahan bilangan okisdasi (Δ) sebesar 1
3. Mengalikan perubahan bilangan oksidasi (Δ) dengan jumlah atom yang mengalami perubahan bilangan oksidasi
Mn : Δ = 5 x 1 = 5
C : Δ = 1 x 2 = 2
4. Menyamakan jumlah atom yang mengalami perubahan bilangan oksidasi pada masing-masing ruas
MnO4- + C2O42- ——> Mn2+ + 2 CO2
5. Menyamakan perubahan bilangan oksidasi (Δ); bilangan pengali dijadikan sebagai koefisien reaksi baru
Mn dikalikan 2 dan C dikalikan 5, sehingga Δ kedua unsur sama, yaitu sebesar 10
2 MnO4- + 5 C2O42- ——> 2 Mn2+ + 10 CO2
6. Dalam tahap ini, reaksi hampir selesai disetarakan; selanjutnya atom O dapat disetarakan dengan menambahkan H2O pada ruas yang kekurangan atom O; sementara untuk menyetarakan atom H, gunakan H+
16 H+ + 2 MnO4- + 5 C2O42- ——> 2 Mn2+ + 10 CO2 + 8 H2O
7. Memeriksa kembali untuk meyakinkan bahwa semua atomnya telah setara, semua muatannya telah setara, dan semua koefisiennya ada dalam bentuk bilangan bulat terkecil
Untuk reaksi yang berlangsung dalam suasana basa, tambahkan ion OH- dalam jumlah yang sama dengan ion H+ pada masing-masing ruas untuk menghilangkan ion H+. Persamaan reaksi tersebut berubah menjadi sebagai berikut :
16 OH- + 16 H+ + 2 MnO4- + 5 C2O42- ——> 2 Mn2+ + 10 CO2 + 8 H2O + 16 OH-
16 H2O + 2 MnO4- + 5 C2O42- ——> 2 Mn2+ + 10 CO2 + 8 H2O + 16 OH-
8 H2O + 2 MnO4- + 5 C2O42- ——> 2 Mn2+ + 10 CO2 + 16 OH-
Selanjutnya, saya akan kembali memberikan sebuah contoh penyelesaian persamaan reaksi redoks dengan metode PBO :
MnO(s) + PbO2(s) + HNO3(aq) ——> HMnO4(aq) + Pb(NO3)2(aq) + H2O(l)
1. Mengubah reaksi redoks yang belum disetarakan menjadi bentuk ion
MnO + PbO2 + H+ + NO3 ——> H+ + MnO4- + Pb2+ + 2 NO3- + H2O
2. Menentukan bilangan oksidasi masing-masing unsur
MnO + PbO2 + H+ + NO3 ——> H+ + MnO4- + Pb2+ + 2 NO3- + H2O
+2 -2 +4 -2 + 1 +5 -2 +1 +7 -2 +2 +5 -2 +1 -2
3. Menuliskan kembali semua unsur yang mengalami perubahan bilangan oksidasi; ion pengamat tidak disertakan
MnO + PbO2 ——> MnO4- + Pb2+
+2 -2 +4 -2 +7 -2 +2
4. Menentukan unsur yang mengalami perubahan bilangan oksidasi serta besarnya perubahan bilangan oksidasi
Mn mengalami perubahan bilangan oksidasi dari +2 menjadi +7; besarnya perubahan bilangan oksidasi (Δ) sebesar 5
Pb mengalami perubahan bilangan oksidasi dari +4 menjadi +2; besarnya perubahan bilangan okisdasi (Δ) sebesar 2
5. Mengalikan perubahan bilangan oksidasi (Δ) dengan jumlah atom yang mengalami perubahan bilangan oksidasi
Mn : Δ = 5 x 1 = 5
Pb : Δ = 2 x 1 = 2
6. Menyamakan jumlah atom yang mengalami perubahan bilangan oksidasi pada masing-masing ruas
MnO + PbO2 ——> MnO4- + Pb2+
7. Menyamakan perubahan bilangan oksidasi (Δ); bilangan pengali dijadikan sebagai koefisien reaksi baru
Mn dikalikan 2 dan Pb dikalikan 5, sehingga Δ kedua unsur sama, yaitu sebesar 10
2 MnO + 5 PbO2 ——> 2 MnO4- + 5 Pb2+
8. Dalam tahap ini, reaksi hampir selesai disetarakan; selanjutnya atom O dapat disetarakan dengan menambahkan H2O pada ruas yang kekurangan atom O; sementara untuk menyetarakan atom H, gunakan H+
8 H+ + 2 MnO + 5 PbO2 ——> 2 MnO4- + 5 Pb2+ + 4 H2O
9. Mengubah persamaan reaksi kembali ke be ntuk molekulnya dengan menambahkan ion pengamat
10 NO3- + 2 H+ + 8 H+ + 2 MnO + 5 PbO2 ——> 2 MnO4- + 5 Pb2+ + 4 H2O + 2 H+ + 10 NO3-
2 MnO + 5 PbO2 + 10 HNO3 ——> 2 HMnO4 + 5 Pb(NO3)2 + 4 H2O
10. Memeriksa kembali untuk meyakinkan bahwa semua atomnya telah setara, semua muatannya telah setara, dan semua koefisiennya ada dalam bentuk bilangan bulat terkecil
Pada pembahasan sebelumnya, kita telah mengetahui bahwa saat sepotong logam seng dicelupkan ke dalam larutan tembaga (II) sulfat, akan terjadi reaksi redoks. Logam seng akan teroksidasi menjadi ion Zn2+, sementara ion Cu2+ akan tereduksi menjadi logam tembaga yang menutupi permukaan logam seng. Persamaan untuk reaksi ini adalah sebagai berikut :
Zn(s) + Cu2+(aq) ——> Zn2+(aq) + Cu(s)
Ini merupakan contoh perpindahan elektron langsung. Logam seng memberikan dua elektron (menjadi teroksidasi) ke ion Cu2+ yang menerima kedua elektron tersebut (mereduksinya menjadi logam tembaga). Logam tembaga akan melapisi permukaan logam seng.
Seandainya kedua reaksi paruh tersebut dapat dipisahkan, sehingga ketika logam seng teroksidasi, elektron akan dilepaskan dan dialirkan melalui kawat penghantar untuk mencapai ion Cu2+ (perpindahan elektron tidak langsung), kita akan mendapatkan sesuatu yang bermanfaat. Selama reaksi kimia berlangsung, akan terjadi aliran elektron yang menghasilkan energi listrik. Peralatan yang dapat mengubah energi kimia (reaksi redoks) menjadi arus listrik (aliran elektron = energi listrik) dikenal dengan Sel Volta atau Sel Galvani.
Salah satu contoh sel volta yang sering digunakan para kimiawan adalah Sel Daniell. Sel volta ini menggunakan reaksi antara logam Zn dan ion Cu2+ untuk menghasilkan listrik. Sel Daniell diberi nama menurut penemunya, John Frederic Daniell, seorang kimiawan Inggris yang menemukannya pada tahun 1836).
Pada Sel Daniell, sepotong logam seng dimasukkan ke dalam larutan seng (II) sulfat, ZnSO4(aq), pada satu wadah. Sementara, sepotong logam tembaga juga dimasukkan ke dalam larutan tembaga (II) sulfat, CuSO4(aq), pada wadah lainnya. Potongan logam tersebut disebut elektroda yang berfungsi sebagai ujung akhir atau penampung elektron. Kawat penghantar akan menghubungkan elektroda-elektrodanya. Selanjutnya, rangkaian sel dilengkapi pula dengan jembatan garam. Jembatan garam, biasanya berupa tabung berbentuk U yang terisi penuh dengan larutan garam pekat, memberikan jalan bagi ion untuk bergerak dari satu tempat ke tempat lainnya untuk menjaga larutan agar muatan listriknya tetap netral.
Sel Daniell bekerja atas dasar prinsip reaksi redoks. Logam seng teroksidasi dan membebaskan elektron yang mengalir melalui kawat menuju elektroda tembaga. Selanjutnya, elektron tersebut digunakan oleh ion Cu2+ ­yang mengalami reduksi membentuk logam tembaga. Ion Cu2+ dari larutan tembaga (II) sulfat akan melapisi elektroda tembaga, sedangkan elektroda seng semakin berkurang (habis). Kation-kation di dalam jembatan garam berpindah ke wadah yang mengandung elektroda tembaga untuk menggantikan ion tembaga yang semakin habis. Sebaliknya, anion-anion pada jembatan garam berpindah ke sisi elektroda seng, yang menjaga agar larutan yang mengandung ion Zn2+ tetap bermuatan listrik netral.
Elektroda seng disebut anoda, yaitu elektroda yang menjadi tempat terjadinya reaksi oksidasi. Oleh karena anoda melepaskan elektron, maka anoda kaya akan elektron sehingga diberi tanda negatif (kutub negatif). Sementara, elektroda tembaga disebut katoda, yaitu elektroda yang menjadi tempat terjadinya reaksi reduksi. Oleh karena katoda menerima elektron, maka katoda kekurangan elektron sehingga diberi tanda positif (kutub positif).
Reaksi yang terjadi pada masing-masing elektroda (reaksi setengah sel) adalah sebagai berikut :
Anoda (-) : Zn(s) ——> Zn2+(aq) + 2e- ……………………. (1)
Katoda (+) : Cu2+(aq) + 2e- ——> Cu(s) ……………………. (2)
Reaksi Sel : Zn(s) + Cu2+(aq) ——> Zn2+(aq) + Cu(s) …………………………… [(1) + (2)]
Munculnya arus listrik (aliran elektron) yang terjadi dari anoda menuju katoda disebabkan oleh perbedaan potensial elektrik antara kedua elektroda tersebut. Melalui percobaan, perbedaan potensial elektrik antara katoda dan anoda dapat diukur dengan voltmeter dan hasilnya berupa potensial standar sel (E°sel). Semakin besar perbedaan potensial elektrik, semakin besar pula arus listrik dan potensial standar sel yang dihasilkan.
Reaksi yang terjadi pada sel volta dapat dinyatakan dalam bentuk yang lebih ringkas, yaitu notasi sel. Sesuai dengan kesepakatan, reaksi oksidasi dinyatakan di sisi kiri, sementara reaksi reduksi dinyatakan di sisi kanan. Notasi sel untuk Sel Daniell adalah sebagai berikut :
Zn(s) / Zn2+(aq) // Cu2+(aq) / Cu(s)
Saat konsentrasi ion Cu2+ dan Zn2+ masing-masing 1 M, terlihat pada voltmeter bahwa besarnya potensial standar sel (E°sel) bagi Sel Daniell adalah 1,10 V pada suhu 25°C. Oleh karena reaksi sel merupakan hasil penjumlahan dari dua reaksi setengah sel, maka potensial standar sel merupakan hasil penjumlahan dari dua potensial standar setengah sel. Pada Sel Daniell, potensial standar sel merupakan hasil penjumlahan potensial elektroda Cu dan Zn. Dengan mengetahui potensial standar dari masing-masing elektroda, kita dapat menentukan besarnya potensial standar sel lain yang terbentuk. Potensial yang digunakan dalam pemahasan ini adalah potensial standar reduksi.
Potensial standar reduksi masing-masing elektroda dapat ditentukan dengan membandingkannya terhadap elektroda standar (acuan), yaitu elektroda hidrogen standar (SHE = Standard Hydrogen Electrode). Keadaan standar yang dimaksud adalah saat tekanan gas H2 sebesar 1 atm, konsentrasi larutan ion H+ sebesar 1 M, dan dan pengukuran dilakukan pada suhu 25°C. Sesuai dengan kesepakatan, SHE memiliki potensial standar reduksi sebesar nol (E°red SHE = 0).
2 H+ (1 M) + 2 e- ——> H2 (1 atm) E°­red = 0 V
SHE dapat digunakan untuk menentukan besarnya potensial standar reduksi (E°red) elektroda lainnya. Dengan demikian, kita dapat menyusun suatu daftar yang berisi urutan nilai E°­red elektroda-elektroda, dari yang terkecil (paling negatif) hingga yang terbesar (paling positif). Susunan elektroda-elektroda tersebut di kenal dengan istilah Deret Volta (deret kereaktifan logam).
Li – K – Ba – Sr – Ca – Na – Mg – Al – Mn – Zn – Cr – Fe – Cd – Co – Ni – Sn – Pb – H+ – Cu – Ag – Hg – Pt – Au
Logam-logam yang terletak di sisi kiri H+ memiliki red bertanda negatif. Semakin ke kiri, nilai red semakin kecil (semakin negatif). Hal ini menandakan bahwa logam-logam tersebut semakin sulit mengalami reduksi dan cenderung mengalami oksidasi. Oleh sebab itu, kekuatan reduktor akan meningkat dari kanan ke kiri. Sebaliknya, logam-logam yang terletak di sisi kanan H+ memiliki red bertanda positif. Semakin ke kanan, nilai red semakin besar (semakin positif). Hal ini berarti bahwa logam-logam tersebut semakin mudah mengalami reduksi dan sulit mengalami oksidasi. Oleh sebab itu, kekuatan oksidator akan meningkat dari kiri ke kanan. Singkat kata, logam yang terletak disebelah kanan relatif terhadap logam lainnya, akan mengalami reduksi. Sementara, logam yang terletak di sebelah kiri relatif terhadap logam lainnya, akan mengalami oksidasi. Logam yang terletak disebelah kiri relatif terhadap logam lainnya mampu mereduksi ion logam menjadi logam (mendesak ion dari larutannya menjadi logam). Sebaliknya, logam yang terletak di sebelah kanan relatif terhadap logam lainnya mampu mengoksidasi logam menjadi ion logam (melarutkan logam menjadi ion dalam larutannya).
Sebagai contoh, kita ingin merangkai sebuah sel volta dengan menggunakan elektroda Fe dan Ni. Berdasarkan susunan logam pada deret volta, logam Fe terletak di sebelah kiri relatif terhadap logam Ni. Hal ini menandakan bahwa logam Ni lebih mudah tereduksi dibandingkan logam Fe. Akibatnya, dalam sel volta, elektroda Ni berfungsi sebagai katoda, sedangkan elektroda Fe berfungsi sebagai anoda. Reaksi yang terjadi pada sel volta adalah sebagai berikut :
Katoda (+) : Ni2+ + 2 e- ——> Ni ……………………. (1)
Anoda (-) : Fe ——> Fe2+ + 2 e- ……………………. (2)
Reaksi Sel : Fe + Ni2+ ——> Fe2+ + Ni …………………………………… [(1) + (2)]
Notasi Sel : Fe / Fe2+ // Ni2+ / Ni
Sesuai dengan kesepakatan, potensial sel (E°sel) merupakan kombinasi dari red katoda dan red anoda, yang ditunjukkan melalui persamaan berikut :
sel = katoda – E° anoda
Potensial reduksi standar (E°red) masing-masing elektroda dapat dilihat pada Tabel Potensial Standar Reduksi. Dari tabel, terlihat bahwa nilai red Fe adalah sebesar -0,44 V. Sementara nilai red Ni adalah sebesar -0,25 V. Dengan demikian, nilai sel Fe/Ni adalah sebagai berikut :
sel = -0,25 – (-0,44) = +0,19 V
Suatu reaksi redoks dapat berlangsung spontan apabila nilai sel positif. Reaksi tidak dapat berlangsung spontan apabila nilai sel negatif. Reaksi yang dapat berlangsung spontan justru adalah reaksi kebalikannya.
Apabila larutan tidak dalam keadaan standar, maka hubungan antara potensial sel (Esel) dengan potensial sel standar (E°sel) dapat dinyatakan dalam persamaan Nerst berikut ini :
E sel = sel – (RT/nF) ln Q
Pada suhu 298 K (25°C), persamaan Nerst berubah menjadi sebagai berikut :
E sel = sel – (0,0257/n) ln Q
E sel = sel – (0,0592/n) log Q
Esel = potensial sel pada keadaan tidak standar
sel = potensial sel pada keadaan standar
R = konstanta gas ideal = 8,314 J/mol.K
T = suhu mutlak (K) [dalam hal ini, kita menggunakan temperatur kamar, 25°C atau 298 K]
n = jumlah mol elektron yang terlibat dalam redoks
F = konstanta Faraday = 96500 C/F
Q = rasio konsentrasi ion produk terhadap konsentrasi ion reaktan
Selama proses reaksi redoks berlangsung, elektron akan mengalir dari anoda menuju katoda. Akibatnya, konsentrasi ion reaktan akan berkurang, sebaliknya konsentrasi ion produk akan bertambah. Nilai Q akan meningkat, yang menandakan bahwa nilai Esel akan menurun. Pada saat reaksi mencapai kesetimbangan, aliran elektron akan terhenti. Akibatnya, Esel = 0 dan Q = K (K= konstanta kesetimbangan kimia). Dengan demikian, konstanta kesetimbangan kimia (K) dapat ditentukan melalui sel volta.
Melalui pembahasan persamaan Nerst, dapat terlihat bahwa besarnya potensial sel dipengaruhi oleh konsentrasi. Dengan demikian, kita dapat merakit sel volta yang tersusun dari dua elektroda yang identik, tetapi masing-masing memiliki konsentrasi ion yang berbeda. Sel seperti ini dikenal dengan istilah Sel Konsentrasi.
Sebagai contoh, sel konsentrasi dengan elektroda Zn, masing-masing memiliki konsentrasi ion seng sebesar 1,0 M dan 0,1 M. Larutan yang relatif pekat akan mengalami reduksi, sementara larutan yang lebih encer mengalami oksidasi. Potensial standar sel (sel) untuk sel konsentrasi adalah nol (0). Reaksi yang terjadi pada sel konsentrasi Zn adalah sebagai berikut :
Katoda (+) : Zn2+ (1,0 M) + 2 e- ——> Zn …………………….. (1)
Anoda (-) : Zn ——> Zn2+ (0,1 M) + 2 e …………………….. (2)
Reaksi Sel : Zn2+ (1,0 M) ——> Zn2+ (0,1 M) …………………………….. [(1) + (2)]
Notasi Sel : Zn / Zn2+ (0,1 M) // Zn2+ (1,0 M) / Zn
Potensial sel konsentrasi dapat diperoleh melalui persamaan Nerst berikut :
E sel = sel – (0,0257/2) ln ([Zn2+] encer / [Zn2+] pekat)
E sel = 0 – (0,0257/2) ln [(0,1] / [1,0])
E sel = 0,0296 volt

Potensial sel konsentrasi umumnya relatif kecil dan semakin berkurang selama proses reaksi berlangsung. Reaksi akan terus berlangsung hingga kedua wadah mencapai keadaan konsentrasi ion sama. Apabila konsentrasi ion kedua wadah telah sama, Esel = 0 dan aliran elektron terhenti.
Aplikasi pengetahuan sel volta dapat ditemukan dalam kehidupan sehari-hari. Salah satu contoh aplikasi sel volta adalah penggunaan batu baterai. Baterai adalah sel galvani, atau gabungan dari beberapa sel galvani , yang dapat digunakan sebagai sumber arus listrik. Beberapa jenis baterai yang kita gunakan dalam kehidupan sehari-hari, antara lain :
1. The Dry Cell Battery
Dikenal dengan istilah sel Leclanche atau batu baterai kering. Pada batu baterai kering, logam seng berfungsi sebagai anoda. Katodanya berupa batang grafit yang berada di tengah sel. Terdapat satu lapis mangan dioksida dan karbon hitam mengelilingi batang grafit dan pasta kental yang terbuat dari amonium klorida dan seng (II) klorida yang berfungsi sebagai elektrolit. Potensial yang dihasilkan sekitar 1,5 volt.
Reaksi selnya adalah sebagai berikut :
Katoda (+) : 2 NH4+(aq) + 2 MnO2(s) + 2 e- ——> Mn2O3(s) + 2 NH3(aq) + H2O(l) ……………… (1)
Anoda (-) : Zn(s) ——> Zn2+(aq) + 2 e- …………….. (2)
Reaksi Sel : 2 NH4+(aq) + 2 MnO2(s) + Zn(s) ——> Mn2O3(s) + 2 NH3(aq) + H2O(l) + Zn2+(aq) …………….. [(1) + (2)]
Pada batu baterai kering alkalin (baterai alkalin), amonium klorida yang bersifat asam pada sel kering diganti dengan kalium hidroksida yang bersifat basa (alkalin). Dengan bahan kimia ini, korosi pada bungkus logam seng dapat dikurangi.
2. The Mercury Battery
Sering digunakan pada dunia kedokteran dan industri elektronik. Sel merkuri mempunyai struktur menyerupai sel kering. Dalam baterai ini, anodanya adalah logam seng (membentuk amalgama dengan merkuri), sementara katodanya adalah baja (stainless steel cylinder). Elektrolit yang digunakan dalam baterai ini adalah merkuri (II) Oksida, HgO. Potensial yang dihasilkan sebesar 1,35 volt.
Reaksi selnya adalah sebagai berikut :
Katoda (+) : HgO(s) + H2O(l) + 2 e- ——> Hg(l) + 2 OH-(aq) …………………… (1)
Anoda (-) : Zn(Hg) + 2 OH-(aq) ——> ZnO(s) + H2O(l) + 2 e ………………….. (2)
Reaksi sel : Zn(Hg) + HgO(s) ——> ZnO(s) + Hg(l) ………………………. [(1) + (2)]
3. The Lead Storage Battery
Dikenal dengan sebutan baterai mobil atau aki/accu. Baterai penyimpan plumbum (timbal) terdiri dari enam sel yang terhubung secara seri. Anoda pada setiap sel adalah plumbum (Pb), sedangkan katodanya adalah plumbum dioksida (PbO2). Elektroda dicelupkan ke dalam larutan asam sulfat (H2SO4).
Reaksi selnya pada saat pemakaian aki adalah sebagai berikut :
Katoda (+) : PbO2(s) + 4 H+(aq) + SO42-(aq) + 2 e- ——> PbSO4(s) + 2 H2O(l) ………………… (1)
Anoda (-) : Pb(s) + SO42-(aq) ——> PbSO4(s) + 2 e- …………………………… (2)
Reaksi sel : PbO2(s) + Pb(s) + 4 H+(aq) + 2 SO42-(aq) ——> 2 PbSO4(s) + 2 H2O(l) ……………………. [(1) + (2)]
Pada kondisi normal, masing-masing sel menghasilkan potensial sebesar 2 volt. Dengan demikian, sebuah aki dapat menghasilkan potensial sebesar 12 volt. Ketika reaksi diatas terjadi, kedua elektroda menjadi terlapisi oleh padatan plumbum (II) sulfat, PbSO4, dan asam sulfatnya semakin habis.
Semua sel galvani menghasilkan listrik sampai semua reaktannya habis, kemudian harus dibuang. Hal ini terjadi pada sel kering dan sel merkuri. Namun, sel aki dapat diisi ulang (rechargeable), sebab reaksi redoksnya dapat dibalik untuk menghasilkan reaktan awalnya. Reaksi yang terjadi saat pengisian aki merupakan kebalikan dari reaksi yang terjadi saat pemakaian aki.
4. The Lithium-Ion Battery
Digunakan pada peralatan elektronik, seperti komputer, kamera digital, dan telepon seluler. Baterai ini memiliki massa yang ringan sehingga bersifat portable. Potensial yang dihasilkan cukup besar, yaitu sekitar 3,4 volt. Anodanya adalah Li dalam grafit, sementara katodanya adalah oksida logam transisi (seperti CoO2). Elektrolit yang digunakan adalah pelarut organik dan sejumlah garam organik.
Reaksi yang terjadi adalah sebagai berikut :
Katoda (+) : Li+(aq) + CoO2(s) + e- ——> LiCoO2(s) ………………. (1)
Anoda : Li(s) ——> Li+ (aq) + e- ………………. (2)
Reaksi sel : Li(s) + CoO2(s) ——> LiCoO2(s) ……………………. [(1) + (2)]
5. Fuel Cell
Dikenal pula dengan istilah sel bahan bakar. Sebuah sel bahan bakar hidrogen-oksigen yang sederhana tersusun atas dua elektroda inert dan larutan elektrolit, seperti kalium hidroksida. Gelembung gas hidrogen dan oksigen dialirkan pada masing-masing elektroda. Potensial yang dihasilkan adalah sebesar 1,23 volt.
Reaksi yang terjadi adalah sebagai berikut :
Katoda (+) : O2(g) + 2 H2O(l) +4 e- ——> 4 OH-(aq) ………………..(1)
Anoda (-) : 2 H2(g) + 4 OH-(aq) ——> 4 H2O(l) + 4 e- ……………………… (2)
Reaksi sel : O2(g) + 2 H2(g) ——> 2 H2O(l) ………………. [(1) + (2)]
Korosi adalah persitiwa teroksidasinya besi membentuk karat besi (Fe2O3.xH2O). Korosi besi disebabkan oleh beberapa faktor, seperti adanya air, gas oksigen, dan asam. Karat besi dapat mengurangi kekuatan besi. Oleh karena itu, korosi besi harus dicegah.
Korosi merupakan salah satu reaksi redoks yang tidak diharapkan. Reaksi yang terjadi selama proses korosi adalah sebagai berikut :
Katoda (+) : O2(g) + 4 H+(aq) + 4 e- ——> 2 H2O(l) ……………………… (1)
Anoda (-) : 2 Fe(s) ——> 2 Fe2+(aq) + 4 e- ………………. (2)
Reaksi sel : 2 Fe(s) + O2(g) + 4 H+(aq) ——> 2 Fe2+(aq) + 2 H2O(l) …………….. [(1) + (2)]
sel = +1,67 volt
Ion Fe2+ akan teroksidasi kembali oleh sejumlah gas oksigen menghasilkan ion Fe3+ (karat besi). Reaksi yang terjadi adalah sebagai berikut :
4 Fe2+(aq) + O2(g) + (4+2x) H2O(l) ——> 2 Fe2O3.xH2O(s) + 8 H+(aq)
Untuk melindung logam besi dari proses korosi, beberapa metode proteksi dapat diterapkan, antara lain :
1. Melapisi permukaan logam besi dengan lapisan cat
2. Melapisi permukaan logam besi dengan lapisan minyak (gemuk)
3. Melapisi permukaan logam besi dengan oksida inert (seperti Cr2O3 atau Al2O3)
4. Proteksi Katodik (Pengorbanan Anoda)
Suatu metode proteksi logam besi dengan menggunakan logam-logam yang lebih reaktif dibandingkan besi (logam-logam dengan red lebih kecil dari besi), seperti seng dan magnesium. Dengan metode ini, logam-logam yang lebih reaktif tersebut akan teroksidasi, sehingga logam besi terhindar dari peristiwa oksidasi. Oleh karena logam pelindung, dalam hal ini “mengorbankan diri” untuk melindungi besi, maka logam tersebut harus diganti secara berkala.
5. Melapisi permukaan logam besi dengan logam lain yang inert terhadap korosi
Metode ini menggunakan logam-logam yang kurang reaktif dibandingkan besi (logam-logam dengan red lebih besar dari besi), seperti timah dan tembaga. Pelapisan secara sempurna logam inert pada permukaan logam besi dapat mencegah kontak besi dengan agen penyebab korosi (air, asam, dan gas oksigen). Akan tetapi, apabila terdapat cacat atau terkelupas (tergores), akan terjadi percepatan korosi.

Elektrokimia II : Sel Elektrolisis

Dalam tulisan ini, kita akan mempelajari tentang reaksi-reaksi sel elektrolisis (aspek kualitatif). Kemudian kita akan menghitung massa endapan logam dan volume gas yang dihasilkan dari reaksi elektrolisis (aspek kuantitatif). Kita juga akan mempelajari pengaruh besarnya arus listrik terhadap kuantitas produk elektrolisis yang dihasilkan.
Sel Elektrolisis adalah sel yang menggunakan arus listrik untuk menghasilkan reaksi redoks yang diinginkan dan digunakan secara luas di dalam masyarakat kita. Baterai aki yang dapat diisi ulang merupakan salah satu contoh aplikasi sel elektrolisis dalam kehidupan sehari-hari (lihat Elektrokimia I : Penyetaraan Reaksi Redoks dan Sel Volta). Baterai aki yang sedang diisi kembali (recharge) mengubah energi listrik yang diberikan menjadi produk berupa bahan kimia yang diinginkan. Air, H2O, dapat diuraikan dengan menggunakan listrik dalam sel elektrolisis. Proses ini akan mengurai air menjadi unsur-unsur pembentuknya. Reaksi yang terjadi adalah sebagai berikut : 2 H2O(l) ——> 2 H2(g) + O2(g)
Rangkaian sel elektrolisis hampir menyerupai sel volta. Yang membedakan sel elektrolisis dari sel volta adalah, pada sel elektrolisis, komponen voltmeter diganti dengan sumber arus (umumnya baterai). Larutan atau lelehan yang ingin dielektrolisis, ditempatkan dalam suatu wadah. Selanjutnya, elektroda dicelupkan ke dalam larutan maupun lelehan elektrolit yang ingin dielektrolisis. Elektroda yang digunakan umumnya merupakan elektroda inert, seperti Grafit (C), Platina (Pt), dan Emas (Au). Elektroda berperan sebagai tempat berlangsungnya reaksi. Reaksi reduksi berlangsung di katoda, sedangkan reaksi oksidasi berlangsung di anoda. Kutub negatif sumber arus mengarah pada katoda (sebab memerlukan elektron) dan kutub positif sumber arus tentunya mengarah pada anoda. Akibatnya, katoda bermuatan negatif dan menarik kation-kation yang akan tereduksi menjadi endapan logam. Sebaliknya, anoda bermuatan positif dan menarik anion-anion yang akan teroksidasi menjadi gas. Terlihat jelas bahwa tujuan elektrolisis adalah untuk mendapatkan endapan logam di katoda dan gas di anoda.
Ada dua tipe elektrolisis, yaitu elektrolisis lelehan (leburan) dan elektrolisis larutan. Pada proses elektrolisis lelehan, kation pasti tereduksi di katoda dan anion pasti teroksidasi di anoda. Sebagai contoh, berikut ini adalah reaksi elektrolisis lelehan garam NaCl (yang dikenal dengan istilah sel Downs) :
Katoda (-) : 2 Na+(l) + 2 e- ——> 2 Na(s) ……………….. (1)
Anoda (+) : 2 Cl-(l) Cl2(g) + 2 e- ……………….. (2)
Reaksi sel : 2 Na+(l) + 2 Cl-(l) ——> 2 Na(s) + Cl2(g) ……………….. [(1) + (2)]
Reaksi elektrolisis lelehan garam NaCl menghasilkan endapan logam natrium di katoda dan gelembung gas Cl2 di anoda. Bagaimana halnya jika lelehan garam NaCl diganti dengan larutan garam NaCl? Apakah proses yang terjadi masih sama? Untuk mempelajari reaksi elektrolisis larutan garam NaCl, kita mengingat kembali Deret Volta (lihat Elektrokimia I : Penyetaraan Reaksi Redoks dan Sel Volta).
Pada katoda, terjadi persaingan antara air dengan ion Na+. Berdasarkan Tabel Potensial Standar Reduksi, air memiliki red yang lebih besar dibandingkan ion Na+. Ini berarti, air lebih mudah tereduksi dibandingkan ion Na+. Oleh sebab itu, spesi yang bereaksi di katoda adalah air. Sementara, berdasarkan Tabel Potensial Standar Reduksi, nilai red ion Cl- dan air hampir sama. Oleh karena oksidasi air memerlukan potensial tambahan (overvoltage), maka oksidasi ion Cl- lebih mudah dibandingkan oksidasi air. Oleh sebab itu, spesi yang bereaksi di anoda adalah ion Cl-. Dengan demikian, reaksi yang terjadi pada elektrolisis larutan garam NaCl adalah sebagai berikut :
Katoda (-) : 2 H2O(l) + 2 e- ——> H2(g) + 2 OH-(aq) ……………….. (1)
Anoda (+) : 2 Cl-(aq) ——> Cl2(g) + 2 e- ……………….. (2)
Reaksi sel : 2 H2O(l) + 2 Cl-(aq) ——> H2(g) + Cl2(g) + 2 OH-(aq) ……………………. [(1) + (2)]
Reaksi elektrolisis larutan garam NaCl menghasilkan gelembung gas H2 dan ion OH­(basa) di katoda serta gelembung gas Cl2 di anoda. Terbentuknya ion OH- pada katoda dapat dibuktikan dengan perubahan warna larutan dari bening menjadi merah muda setelah diberi sejumlah indikator fenolftalein (pp). Dengan demikian, terlihat bahwa produk elektrolisis lelehan umumnya berbeda dengan produk elektrolisis larutan.
Selanjutnya kita mencoba mempelajari elektrolisis larutan Na2SO4. Pada katoda, terjadi persaingan antara air dan ion Na+. Berdasarakan nilai red, maka air yang akan tereduksi di katoda. Di lain sisi, terjadi persaingan antara ion SO42- dengan air di anoda. Oleh karena bilangan oksidasi S pada SO4-2 telah mencapai keadaan maksimumnya, yaitu +6, maka spesi SO42- tidak dapat mengalami oksidasi. Akibatnya, spesi air yang akan teroksidasi di anoda. Reaksi yang terjadi adalah sebagai berikut :
Katoda (-) : 4 H2O(l) + 4 e- ——> 2 H2(g) + 4 OH-(aq) ……………….. (1)
Anoda (+) : 2 H2O(l) ——> O2(g) + 4 H+(aq) + 4 e- ……………….. (2)
Reaksi sel : 6 H2O(l) ——> 2 H2(g) + O2(g) + 4 H+(aq) + 4 OH-(aq) …………………….. [(1) + (2)]
6 H2O(l) ——> 2 H2(g) + O2(g) + 4 H2O(l) …………………. [(1) + (2)]
2 H2O(l) ——> 2 H2(g) + O2(g) …………………….. [(1) + (2)]
Dengan demikian, baik ion Na+ maupun SO42-, tidak bereaksi. Yang terjadi justru adalah peristiwa elektrolisis air menjadi unsur-unsur pembentuknya. Hal yang serupa juga ditemukan pada proses elektrolisis larutan Mg(NO3)2 dan K2SO4.
Bagaimana halnya jika elektrolisis lelehan maupun larutan menggunakan elektroda yang tidak inert, seperti Ni, Fe, dan Zn? Ternyata, elektroda yang tidak inert hanya dapat bereaksi di anoda, sehingga produk yang dihasilkan di anoda adalah ion elektroda yang larut (sebab logam yang tidak inert mudah teroksidasi). Sementara, jenis elektroda tidak mempengaruhi produk yang dihasilkan di katoda. Sebagai contoh, berikut adalah proses elektrolisis larutan garam NaCl dengan menggunakan elektroda Cu :
Katoda (-) : 2 H2O(l) + 2 e- ——> H2(g) + 2 OH-(aq) …………………….. (1)
Anoda (+) : Cu(s) ——> Cu2+(aq) + 2 e- …………………….. (2)
Reaksi sel : Cu(s) + 2 H2O(l) ——> Cu2+(aq) + H2(g) + 2 OH-(aq) …………………….. [(1) + (2)]
Dari pembahasan di atas, kita dapat menarik beberapa kesimpulan yang berkaitan dengan reaksi elektrolisis :
  1. Baik elektrolisis lelehan maupun larutan, elektroda inert tidak akan bereaksi; elektroda tidak inert hanya dapat bereaksi di anoda
  2. Pada elektrolisis lelehan, kation pasti bereaksi di katoda dan anion pasti bereaksi di anoda
  3. Pada elektrolisis larutan, bila larutan mengandung ion alkali, alkali tanah, ion aluminium, maupun ion mangan (II), maka air yang mengalami reduksi di katoda
  4. Pada elektrolisis larutan, bila larutan mengandung ion sulfat, nitrat, dan ion sisa asam oksi, maka air yang mengalami oksidasi di anoda
Salah satu aplikasi sel elektrolisis adalah pada proses yang disebut penyepuhan. Dalam proses penyepuhan, logam yang lebih mahal dilapiskan (diendapkan sebagai lapisan tipis) pada permukaan logam yang lebih murah dengan cara elektrolisis. Baterai umumnya digunakan sebagai sumber listrik selama proses penyepuhan berlangsung. Logam yang ingin disepuh berfungsi sebagai katoda dan lempeng perak (logam pelapis) yang merupakan logam penyepuh berfungsi sebagai anoda. Larutan elektrolit yang digunakan harus mengandung spesi ion logam yang sama dengan logam penyepuh (dalam hal ini, ion perak). Pada proses elektrolisis, lempeng perak di anoda akan teroksidasi dan larut menjadi ion perak. Ion perak tersebut kemudian akan diendapkan sebagai lapisan tipis pada permukaan katoda. Metode ini relatif mudah dan tanpa biaya yang mahal, sehingga banyak digunakan pada industri perabot rumah tangga dan peralatan dapur.
Setelah kita mempelajari aspek kualitatif reaksi elektrolisis, kini kita akan melanjutkan dengan aspek kuantitatif sel elektrolisis. Seperti yang telah disebutkan di awal, tujuan utama elektrolisis adalah untuk mengendapkan logam dan mengumpulkan gas dari larutan yang dielektrolisis. Kita dapat menentukan kuantitas produk yang terbentuk melalui konsep mol dan stoikiometri.
Satuan yang sering ditemukan dalam aspek kuantitatif sel elektrolisis adalah Faraday (F). Faraday didefinisikan sebagai muatan (dalam Coulomb) mol elektron. Satu Faraday equivalen dengan satu mol elektron. Demikian halnya, setengah Faraday equivalen dengan setengah mol elektron. Sebagaimana yang telah kita ketahui, setiap satu mol partikel mengandung 6,02 x 1023 partikel. Sementara setiap elektron mengemban muatan sebesar 1,6 x 10-19 C. Dengan demikian :
1 Faraday = 1 mol elektron = 6,02 x 1023 partikel elektron x 1,6 x 10-19 C/partikel elektron 1 Faraday = 96320 C (sering dibulatkan menjadi 96500 C untuk mempermudah perhitungan)
Hubungan antara Faraday dan Coulomb dapat dinyatakan dalam persamaan berikut :
Faraday = Coulomb / 96500
Coulomb = Faraday x 96500
Coulomb adalah satuan muatan listrik. Coulomb dapat diperoleh melalui perkalian arus listrik (Ampere) dengan waktu (detik). Persamaan yang menunjukkan hubungan Coulomb, Ampere, dan detik adalah sebagai berikut :
Coulomb = Ampere x Detik
Q = I x t
Dengan demikian, hubungan antara Faraday, Ampere, dan detik adalah sebagai berikut :
Faraday = (Ampere x Detik) / 96500
Faraday = (I x t) / 96500
Dengan mengetahui besarnya Faraday pada reaksi elektrolisis, maka mol elektron yang dibutuhkan pada reaksi elektrolisis dapat ditentukan. Selanjutnya, dengan memanfaatkan koefisien reaksi pada masing-masing setengah reaksi di katoda dan anoda, kuantitas produk elektrolisis dapat ditemukan.
Berikut ini adalah beberapa contoh soal aspek kuantitatif sel elektrolisis :
1. Pada elektrolisis larutan AgNO3 dengan elektroda inert dihasilkan gas oksigen sebanyak 5,6 L pada STP. Berapakah jumlah listrik dalam Coulomb yang dialirkan pada proses tersebut?
Penyelesaian :
Reaksi elektrolisis larutan AgNO3 dengan elektroda inert adalah sebagai berikut :
Katoda (-) : Ag+ + e- ——> Ag
Anoda (+) : 2 H2O(l) ——> O2(g) + 4 H+(aq) + 4 e-
Gas O2 terbentuk di anoda. Mol gas O2 yang terbentuk sama dengan 5,6 L / 22,4 L = ¼ mol O2
Berdasarkan persamaan reaksi di anoda, untuk menghasilkan ¼ mol gas O2, maka jumlah mol elektron yang terlibat adalah sebesar 4 x ¼ = 1 mol elektron.
1 mol elektron = 1 Faraday = 96500 C
Jadi, jumlah listrik yang terlibat adalah sebesar 96500 C
2. Unsur Fluor dapat diperoleh dengan cara elektrolisis lelehan NaF. Berapakah waktu yang diperlukan untuk mendapatkan 15 L gas fluorin ( 1 mol gas mengandung 25 L gas) dengan arus sebesar 10 Ampere?
Penyeleasian :
Reaksi elektrolisis lelehan NaF adalah sebagai berikut :
K (-) : Na+(l) + e- ——> Na(s)
A (-) : 2 F-(l) ——> F2(g) + 2 e-
Gas F2 terbentuk di anoda. Mol gas F2 yang terbentuk adalah sebesar 15 L / 25 L = 0,6 mol F2
Berdasarkan persamaan reaksi di anoda, untuk menghasilkan 0,6 mol gas F2, akan melibatkan mol elektron sebanyak 2 x 0,6 = 1,2 mol elektron
1,2 mol elektron = 1,2 Faraday
Waktu yang diperlukan dapat dihitung melalui persamaan berikut :
Faraday = (Ampere x Detik) / 96500
1,2 = (10 x t) / 96500
t = 11850 detik = 3,22 jam
Jadi, diperlukan waktu selama 3,22 jam untuk menghasilkan 15 L gas fluorin
3. Arus sebesar 0,452 A dilewatkan pada sel elektrolisis yang mengandung lelehan CaCl2 selama 1,5 jam. Berapakah jumlah produk yang dihasilkan pada masing-masing elektroda?
Penyelesaian :
Reaksi elektrolisis lelehan CaCl2 adalah sebagai berikut :
K (-) : Ca2+(l) + 2 e- ——> Ca(s)
A (+) : 2 Cl-(l) ——> Cl2(g) + 2 e-
Mol elektron yang terlibat dalam reaksi ini dapat dihitung dengan persamaan berikut :
Faraday = (Ampere x Detik) / 96500
Faraday = (0,452 x 1,5 x 3600) / 96500 mol elektron
Berdasarkan persamaan reaksi di katoda, mol Ca yang dihasilkan adalah setengah dari mol elektron yang terlibat. Dengan demikian, massa Ca yang dihasilkan adalah :
Massa Ca = mol Ca x Ar Ca
Massa Ca = ½ x (0,452 x 1,5 x 3600) / 96500 x 40 = 0,506 gram Ca
Berdasarkan persamaan reaksi di anoda, mol gas Cl2 yang dihasilkan adalah setengah dari mol elektron yang terlibat. Dengan demikian, volume gas Cl2 (STP) yang dihasilkan adalah :
Volume gas Cl2 = mol Cl2 x 22,4 L
Volume gas Cl2 = ½ x (0,452 x 1,5 x 3600) / 96500 x 22.4 L = 0,283 L gas Cl2
Jadi, produk yang dihasilkan di katoda adalah 0,506 gram endapan Ca dan produk yang dihasilkan di anoda adalah 0,283 L gas Cl2 (STP)
4. Dalam sebuah percobaan elektrolisis, digunakan dua sel yang dirangkaikan secara seri. Masing-masing sel menerima arus listrik yang sama. Sel pertama berisi larutan AgNO3, sedangkan sel kedua berisi larutan XCl3. Jika setelah elektrolisis selesai, diperoleh 1,44 gram logam Ag pada sel pertama dan 0,12 gram logam X pada sel kedua, tentukanlah massa molar (Ar) logam X tersebut!
Penyelesaian :
Reaksi elektrolisis larutan AgNO3 :
K (-) : Ag+(aq) + e- ——> Ag(s)
A (+) : 2 H2O(l) ——> O2(g) + 4 H+(aq) + 4 e-
Logam Ag yang dihasilkan sebanyak 1,44 gram; dengan demikian, mol logam Ag yang dihasilkan sebesar 1,44 / 108 mol Ag
Berdasarkan persamaan reaksi di katoda, mol elektron yang dibutuhkan untuk menghasilkan logam Ag sama dengan mol logam Ag (koefisien reaksinya sama)
Sehingga, mol elektron yang digunakan dalam proses elektrolisis ini adalah sebesar 1,44 / 108 mol elektron
Reaksi elektrolisis larutan XCl3 :
K (-) : X3+(aq) + 3 e- ——> X(s)
A (+) : 2 Cl-(l) ——> Cl2(g) + 2 e-
Arus yang sama dialirkan pada sel kedua, sehingga, mol elektron yang digunakan dalam proses elektrolisis ini sama seperti sebelumya, yaitu sebesar 1,44 / 108 mol elektron
Berdasarkan persamaan reaksi di katoda, mol logam X yang dihasilkan sama dengan 1 / 3 kali mol elektron, yaitu sebesar 1 / 3 x 1,44 / 108 mol X
Massa logam X = 0,12 gram; dengan demikian, massa molar (Ar) logam X adalah sebagai berikut:
mol = massa / Ar
Ar = massa / mol
Ar = 0,12 / (1 / 3 x 1,44 / 108) = 27
Jadi, Ar dari logam X adalah 27
»»  READMORE...

Struktur senyawa karbon

a. Keisomeran karena atom karbon asimetrik, keisomeran optik
Sebelum ada teori valensi, kimiawan/fisiologis Perancis Louis Pasteur (1822-1895) telah mengenali pengaruh struktur molekul individual pada sifat gabungan molekul. Ia berhasil memisahkan asam rasemat tartarat (sebenarnya garam natrium amonium) menjadi (+) dan (-) berdasarkan arah muka hemihedral kristalnya (1848).
Kedua senyawa memiliki sifat fisika (misalnya titik leleh) dan kimia yang sama, tetapi ada perbedaan dalam sifat optik dalam larutan masing-masing senyawa. Keduanya memutar bidang polarisasi cahaya, dengan kata lain mempunyai keaktifan optik. Rotasi jenis kedua senyawa, yang mengkur kekuatan rotasi kedua senyawa, memiliki nilai absolut yang sama, namun tandanya berlawanan. Karena molekul berada bebas dalam larutan, perbedaan ini tidak dapat dijelaskan karena perbedaan struktur kristal. Sayangnya waktu itu, walaupun teori atom sudah ada, teori valensi belum ada. Dengan kondisi seperti ini Pasteur tidak dapat menjelaskan penemuannya.
Di tahun 1860-an, kimiawan Jerman Johannes Adolf Wislicenus (1835-1902) menemukan bahwa dua jenis asam laktat yang diketahui waktu itu keduanya adalah asam α-hidroksipropanoat CH3CH(OH)COOH, bukan asam β- hidroksipropanoat HOCH2CH2COOH. Ia lebih lanjut menyarankan bahwa konsep baru untuk stereoisomer harus dibuat untuk menjelaskna fenomena ini. Konse baru ini menyatakan bahwa kedua senyawa yang memiliki rumus struktur yang sama dalam dua dimensu dapat menjadi stereoisomer bila susunan atom-atomnya di ruang berbeda.

Di tahun 1874, van’t Hoff dan Le Bel secara independen mengusulkan teori atom karbon tetrahedral. Menurut teori ini, kedua asam laktat yang dapat digambarkan di Gambar 4.4. Salah satu asam laktat adalah bayangan cermin asam laktat satunya. Dengan kata lain, hubungan kedua senyawa seperti hubungan tangan kanan dan tangan kiri, dan oleh karena itu disebut dengan antipoda atau enantiomer. Berkat teori van’t Hoff dan Le Bel, bidang kimia baru, stereokimia, berkembang dengan cepat.
(+)-asam laktat (-)-lactic acid
Gambar 4.4 Stereoisomer asam laktat.
Kedua isomer atau antipoda, berhubungan layaknya tangan kanan dan kiri
Pada atom karbon pusat di asam laktat, empat atom atau gigus yang berbeda terikat. Atom karbon semacam ini disebut dengan atom karbon asimetrik. Umumnya, jumlah stereoisomer akan sebanyak 2n, n adalah jumlah atom karbon asimetrik. Asam tartarat memiliki dua atom karbon asimetrik. Namun, karena keberadaan simetri molekul, jumlah stereoisomernya kurang dari 2n, dan lagi salah satu stereoisomer secara optik tidak aktif (Gambar 4.5). Semua fenomena ini dapat secara konsisten dijelaskan dengan teori atom karbon tetrahedral.
(+)-asam tartarat (-)-asam tartarat meso-asam tartarat
Gambar 4.5 Stereoisomer asam tartarat(+)-asam tartarat dan (-)-asam tartarat membentuk pasangan enantiomer.
Namun karena adanya simetri, meso-asam tartarat secara optik tidak aktif.
Latihan 4.2 Gliseraldehida Gambarkan perspektif gliseraldehida OHCCHOHCH2OH, gula paling sederhana, seperti cara yang ditunjukkan pada gambar 4.4.
Jawab.
Catat ada banyak cara lain untuk menggambarkannya.
b. Isomer geometri
Van’t Hoff menjelaskan keisomeran asam fumarat dan maleat karena batasan rotasi di ikatan ganda, suatu penjelasan yang berbeda dengan untuk keisomeran optik. Isomer jenis ini disebut dengan isomer geometri. Dalam bentuk trans subtituennya (dalam kasus asam fumarat dan maleat, gugus karboksil) terletak di sisi yang berbeda dari ikatan rangkap, sementara dalam isomer cis-nya subtituennya terletak di sisi yang sama.
Dari dua isomer yang diisoasi, van’t Hoff menamai isomer yang mudah melepaskan air menjadi anhidrida maleat isomer cis sebab dalam isomer cis kedua gugus karboksi dekat satu sama lain. Dengan pemanasan sampai 300 °C, asam fuarat berubah menjadi anhidrida maleat. Hal ini cukup logis karena prosesnya harus melibatkan isomerisasi cis-trans yang merupakan proses dengan galangan energi yang cukup tinggi (Gambar 4.6).
Karena beberapa pasangan isomer geometri telah diketahui, teori isomer geometri memberikan dukunagn yang baik bagi teori struktural van’t Hoff.
asam fumarat asam maleat anhidrida maleat
Gambar 4.6 Isomer geometri asam maleat (bentuk cis) mempunyai dua gugus karboksil yang dekat, dan mudah melepas air menjadi anhidrida (anhidrida maleat).
Latihan 4.3 Isomer dikhloroetilena
Gambarkan rumus struktur semua isomer dikhloroetilena C2H2Cl2.
Jawab: Dua atom khlorin dapat terikat pada atom karbon yang sama, atau pada atom karbon yang
berbeda. Dan pada kasus yang kedua akan ada isomer geometri.
Struktur benzen
Struktur benzen menjadi enigma beberapa tahun. Di tahun 1865, Kekulé mengusulkan struktur siklik planar dengan tiga ikatan tunggal dan tiga ikatan ganda yang terhubungkan secara bergantian. Strukturnya disebut dengan struktur Kekulé. Bukti struktur semacam ini datang dari jumlah isomer benzen tersubstitusi. Dengan struktur Kekulé, akan ada tiga isomer kresol, yakni, o, m- dan p-kresol (Gambar 4.7).
Struktur Kekulé tidak dapat menyelesaikan semua masalah yang berkaitan dengan struktur benzene. Bila benzene memiliki struktur seperti yang diusulkan Kekulé, akan ada dua isomer okresol, yang tidak diamati. Kekulé mempostulatkan bahwa ada kesetimbangan cepat, yang disebut dengan resonansi antara kedua struktur. Istilah resonansi kemudian digunakan dalam mekanika kuantum.
d. Struktur etana: analisis konformasional
Teori atom karbon tetrahedral dan struktur benzene memberikan fondasi teori struktur senyawa organik. Namun, van’t Hoff dan kimiawan lain mengenali bahwa masih ada masalah yang tersisa dan tidak dapat dijelaskan dengan teori karbon tetrahedral. Masalah itu adalah keisomeran yang disebabkan oleh adanya rotasi di sekitar ikatan tunggal.
Bila rotasi di sekitar ikatan C-C dalam 1,2-dikhloroetana CH2ClCH2Cl terbatas sebagaimana dalam kasus asam fumarat dan maleat, maka akan didapati banyak sekali isomer. Walaupun van’t Hoff awalnya menganggap adanya kemungkinan seperti itu, ia akhirnya menyimpulkan bahwa rotasinya bebas (rotasi bebas) karena tidak didapati isomer rotasional akibat batasan rotasi tersebut. Ia menambahkan bahwa struktur yang diamati adalah rata-rata dari semua struktur yang mungkin.
Di tahun 1930-an dibuktikan dengan teori dan percobaan bahwa rotasi di sekitar ikatan tunggal tidak sepenuhnya bebas. Dalam kasus etana, tolakan antara atom hidrogen yang terikat di atom karbon dekatnya akan membentuk halangan bagi rotasi bebas, dan besarnya tolakan akan bervariasi ketika rotasi tersebut berlangsung. Gambar 4.8(a) adalah proyeksi Newman etana, dan Gambar 4.8(b) adalah plot energi-sudut torsi.
Gambar 4.8 Analisis konformasional.
Dalam gambar (a) (proyeksi Newman), Anda dapat melihat molekul di arah ikatan C-C. Atom karbon depan dinyatakan dengan titik potong tiga garis pendek (masing-masing mewakili ikatan CH) sementara lingkaran mewakili arom karbon yang belakang. Keseluruhan gambar akan berkaitan dengan proyeksi molekul di dinding di belakangnya. Demi kesederhanaan atom hidrogennya tidak digambarkan (b) Bila sudut orsinya 0°, 120°, 240° dan 360°, bagian belakang molekul “berimpitan” eclipsed dengan bagian depan. Bila anda menggambarkan proyeksi Newman dengan tepat berimpit, anda sama sekali tidak dapat melihat bagian belakang. Secara konvensi, bagian belakang diputar sedikit agar dapat dilihat.
Bila sudut rotasi (sudut torsi) 0°, 60°, 120° dan 180°, energi molekul kalau tidak maksimum akan minimum. Struktur (konformasi) dengan sudut torsi 0° atau 120° disebut dengan bentuk eklips, dan konformasi dengan sudut torsi 60°atau 180° disebut bentuk staggered. Studi perubahan >struktur molekular yang diakibatkan oleh rotasi di sekitar ikatan tunggal disebut dengan analisis konformasional. Analisis ini telah berkembang sejak tahun 1950-an hingga kini.
Analisis konformasional butana CH3CH2CH2CH3 atas rotasi di sekitar ikatan C-C pusat, mengungkapkan bahwa ada dua bentuk staggered. Bentuk trans, dengan dua gugus metil terminal di sisi yang berlawanan, berenergi 0,7 kkal mol–1 lebih rendah (lebih stabil) daripada isomer gauche yang dua gugus metilnya berdekatan.
Hasil ini dapat diperluas ke senyawa-senyawa semacam pentana dan heksana yang memiliki lingkungan metilena tambahan, dan akhirnya pada poloetilena yang dibentuk oleh sejumlah besar metilen yang terikat. Dalam semua analisis ini, struktur trans, yakni struktur zig zag, adalah yang paling stabil. Namun, ini hanya benar dalam larutan. Untuk wujud padatnya faktor lain harus ikut diperhatikan.
Latihan 4.4 Analisis konformasional 1,2-dikhloroetana
Lakukan analisis konformasional 1,2-dikhloroetan dengan memutar di sekitar ikatan C-C dan menggambarkan proyeksi Newman sebagaimana diperlihatkan di Gambar 4.8(a).
Jawab:
Sebagai rangkuman, struktur senyawa karbon terutama ditentukan oleh keadaan hibridisasi atom karbon yang terlibat. Bila banyak konformasi dimungkinkan oleh adanya rotasi di sekitar ikatan tunggal, konformasi yang paling stabil akan dipilih.
Bila molekulnya memiliki sisi polar, faktor lain mungkin akan terlibat. Interaksi tarik menarik antara sisi positif dan negatif akan mengakibatkan struktur dengan halangan sterik terbesar lebih stabil. Dalam kasus asam salisilat, ikatan hidrogen antara gugus hidroksi dan karboksi akan membuat struktur yang lebih rapat lebih stabil.
Sebagai kesimpulan, struktur senyawa karbon dapat dijelaskan dengan cukup baik bila berbagai faktor dipertimbangkan.
Reaksi senyawa karbon pada umumnya merupakan pemutusan dan pembentukan ikatan kovalen. Ada beberapa jenis reaksi senyawa karbon, diantaranya yaitu reaksi substitusi, adisi, dan eliminasi.
1. Reaksi Subtitusi
Pada reaksi substitusi, atom atau gugus atom yang terdapat dalam suatu molekul digantikan oleh atom atau gugus atom lain. Reaksi substitusi umumnya terjadi pada senyawa yang jenuh (semua ikatan karbon-karbon merupakan ikatan tunggal), tetapi dengan kondisi tertentu dapat juga terjadi pada senyawa tak jenuh.
Contoh:
Halogenasi hidrokarbon (penggantian atom H oleh halogen)
Animasi substitusi
Animasi klorinasi
2. Reaksi Adisi
Reaksi adisi terjadi pada senyawa yang mempunyai ikatan rangkap atau rangkap tiga, termasuk ikatan rangkap karbon dengan atom lain, seperti pada C=O dan pada
Dalam reaksi adisi, molekul senyawa yang mempunyai ikatan rangkap menyerap atom atau gugus atom sehingga ikatan rangkap berubah menjadi ikatan tunggal.
Untuk alkena atau alkuna, bila jumlah atom H pada kedua atom C ikatan rangkap berbeda, maka arah adisi ditentukan oleh kaidah Markovnikov, yaitu atom H akan terikat pada atom karbon yang lebih banyak atom H-nya (“yang kaya semakin kaya”).
Contoh:
Animasi adisi
3. Reaksi Eliminasi
Pada reaksi eliminasi, molekul senyawa berikatan tunggal berubah menjadi senyawa berikatan rangkap dengan melepas molekul kecil. Jadi, eliminasi merupakan kebalikan dari adisi.
Contoh:
Eliminasi air (dehidrasi) dari alkohol. Apabila dipanaskan dengan asam sulfat pekat pada suhu sekitar 1800C, alkohol dapat mengalami dehidrasi membentuk alkena.
REAKSI ALKOHOL
Berdasarkan jenis atom karbon yang mengikat gugus –OH, alkohol dibedakan atas alkohol primer, alkohol sekunder, dan alkohol tersier. Dalam alkohol primer gugus –OH terikat pada atom karbon primer, pada alkohol sekunder, gugus –OH terikat pada atom karbon sekunder, begitu pula pada alkohol tersier, gugus –OH terikat pada atom karbon tersier. Seperti contoh berikut:
a. Reaksi dengan logam aktif
Atom H dari gugus –OH dapat disubstitusi oleh logam aktif seperti natrium dan kalium, membentuk alkoksida dan gas hidrogen. Reaksi ini mirip dengan reaksi natrium dengan air, tetapi reaksi dengan air berlangsung lebih cepat. Reaksi ini menunjukkan bahwa alkohol bersifat sebagai asam lemah (lebih lemah daripada air).
b. Substitusi Gugus –OH oleh Halogen
Gugus –OH alkohol dapat disubstitusi oleh atom halogen bila direaksikan dengan HX pekat, PX3 atau PX5 (X= halogen).
Contoh:
c. Oksidasi Alkohol
Alkohol sederhana mudah terbakar membentuk gas karbon dioksida dan uap air. Oleh karena itu, etanol digunakan sebagai bahan bakar spirtus (spiritus). Reaksi pembakaran etanol, berlangsung sebagai berikut:
Dengan zat-zat pengoksidasi sedang, seperti larutan K2Cr2O7 dalam lingkungan asam, alkohol teroksidasi sebagai berikut:
i. Alkohol primer membentuk aldehida dan dapat teroksidasi lebih lanjut membentuk asam karboksilat.
ii. Alkohol sekunder membentuk keton.
iii. Alkohol tersier tidak teroksidasi.
Reaksi oksidasi etanol dapat dianggap berlangsung sebagai berikut:
Etanal yang dihasilkan dapat teroksidasi lebih lanjut membentuk asam asetat. Hal ini terjadi karena oksidasi aldehida lebih mudah daripada oksidasi alkohol.
d. Pembentukan Ester (Esterifikasi)
Alkohol bereaksi dengan asam karboksilat membentuk ester dan air.
Animasi esterifikasi
e. Dehidrasi Alkohol
Jika alkohol dipanaskan bersama asam sulfat pekat akan mengalami dehidrasi (melepas molekul air) membentuk eter atau alkena. Pemanasan pada suhu sekitar 1300C menghasilkan eter, sedangkan pemanasan pada suhu sekitar 1800C menghasilkan alkena. Reaksi dehidrasi etanol berlangsung sebagai berikut:
REAKSI ETER
Eter adalah golongan senyawa organik yang memiliki rumus umum R-O-R’. Beberapa reaksi dari eter diantaranya adalah:
a. Pembakaran
Eter mudah terbakar membentuk gas karbon dioksida dan uap air.
Contoh:
b. Reaksi dengan Logam Aktif
Berbeda dengan alkohol, eter tidak bereaksi dengan logam natrium (logam aktif).
c. Reaksi dengan PCl5
Eter bereaksi dengan PCl5, tetapi tidak membebaskan HCl.
d. Reaksi dengan Hidrogen Halida (HX)
Eter terurai oleh asam halida, terutama oleh HI. Jika asam halida terbatas:
Jika asam halida berlebihan:
e. Membedakan Alkohol dengan Eter
Alkohol dan eter dapat dibedakan berdasarkan rekasinya dengan logam natrium dan fosforus pentaklorida.
• Alkohol bereaksi dengan logam natrium membebaskan hidrogen, sedangkan eter tidak bereaksi.
• Alkohol bereaksi dengan PCl5 menghasilkan gas HCl, sedangkan eter bereaksi tetapi tidak menghasilkan HCl.
REAKSI ALDEHIDA
Aldehida adalah golongan senyawa organik yang memiliki rumus umum R-CHO. Beberapa reaksi yang terjadi pada aldehida antara lain:
a. Oksidasi
Aldehida adalah reduktor kuat sehingga dapat mereduksi oksidator-oksidator lemah. Perekasi Tollens dan pereaksi Fehling adalah dua contoh oksidator lemah yang merupakan pereaksi khusus untuk mengenali aldehida. Oksidasi aldehida menghasilkan asam karboksilat. Pereaksi Tollens adalah larutan perak nitrat dalam amonia. Pereaksi ini dibuat dengan cara menetesi larutan perak nitrat dengan larutan amonia sedikit demi sedikit hingga endapan yang mula-mula terbentuk larut kembali. Pereaksi Tollens dapat dianggap sebagai larutan perak oksida (Ag2O). aldehida dapat mereduksi pereaksi Tollens sehingga membebaaskan unsur perak (Ag).
Reaksi aldehida dengan pereaksi Tollens dapat ditulis sebagai berikut
Bila reaksi dilangsungkan pada bejana gelas, endapan perak yang terbentuk akan melapisi bejana, membentuk cermin. Oleh karena itu, reaksi ini disebut reaksi cermin perak.
Pereaksi Fehling terdiri dari dua bagian, yaitu Fehling A dan Fehling B. fehling A adalah larutan CuSO4, sedangkan Fehling B merupakan campuran larutan NaOH dan kalium natrium tartrat. Pereksi Fehling dibuat dengan mencampurkan kedua larutan tersebut, sehingga diperoleh suatu larutan yang berwarna biru tua. Dalam pereaksi Fehling, ion Cu2+ terdapat sebagai ion kompleks. Pereaksi Fehling dapat dianggap sebagai larutan CuO.
Reaksi Aldehida dengan pereaksi Fehling menghasilkan endapan merah bata dari Cu2O.
Pereaksi Fehling dipakai untuk identifikasi adanya gula reduksi (seperti glukosa) dalam air kemih pada penderita penyakit diabetes (glukosa mengandung gugus aldehida).
b. Adisi Hidrogen (Reduksi)
Ikatan rangkap –C=O dari gugus fungsi aldehida dapat diadisi oleh gas hidrogen membentuk suatu alkohol primer. Adisi hidrogen menyebabkan penurunan bilangan oksidasi atom karbon gugus fungsi. Oleh karena itu, adisi hidrogen tergolong reduksi.
REAKSI KETON
Keton adalah golongan senyawa organik yang memiliki rumus umum R-COR’ . Reaksi yang dapat terjadi pada keton adalah:
Reduksi
Keton merupakan reduktor yang lebih lemah daripada aldehida. Zat-zat pengoksidasi lemah seperti pereaksi Tollens dan pereksi Fehling tidak dapat mengoksidasi keton. Oleh karena itu, aldehida dan keton dapat dibedakan dengan menggunakan pereaksi-pereaksi tersebut.
Reduksi keton oleh hidrogen akan menghasilkan alkohol sekunder:
REAKSI ASAM KARBOKSILAT
Asam karboksilat adalah golongan senyawa organik yang memiliki rumus umum R-COOH. Beberapa reaksi yang dapat terjadi pada asam karoksilat antara lain:
a. Reaksi penetralan
Asam karboksilat bereaksi dengan basa membentuk garam dan air.
Garam natrium atau kalium dari asam karboksilat suku tinggi dikenal sebagai sabun. Sabun natrium disebut sabun keras, sedangkan sabun kalium disebut sabun lunak. Sebagai contoh, yaitu natrium stearat (NaC17H35COO) dan kalium stearat (KC17H35COO).
Asam alkanoat tergolong asam lemah, semakin panjang rantai alkilnya, semakin lemah asamnya. Jadi, asam alkanoat yang paling kuat adalah asam format, HCOOH. Asam format mempunyai Ka=1,8×10-4. Oleh karena itu, larutan garam natrium dan kaliumnya mengalami hidrolisis parsial dan bersifat basa.
b. Reaksi Pengesteran
Asam karboksilat bereaksi dengan alkohol membentuk ester. Reaksi ini disebut esterifikasi (pengesteran).
REAKSI ESTER
Ester adalah golongan senyawa organik yang memiliki rumus umum R-COOR’.
Ester dapat terhidrolisis dengan pengaruh asam membentuk alkohol dan asam karboksilat. Reaksi hidrolisis tersebut merupakan kebalikan dari pengesteran.
Contoh:
Hidrolisis etil asetat menghasilkan etil alkohol dan asam asetat.
REAKSI HALOALKANA
Haloalkana merupakan bahan industri yang sangat penting. Haloalkana dibuat dari alkana melaluai reaksi substitusi. Haloalkana dapat diubah menjadi bahan kimia lain melalui berbagai reaksi, khususnya substitusi dan eliminasi.
a. Substitusi Atom Halogen dengan gugus –OH
Atom halogen dari haloalkana dapat diganti oleh gugus –OH jika haloalkana direaksikan dengan suatu larautan basa kuat, misalnya dengan NaOH.
Animasi substitusi
b. Eliminasi HX
Halooalkana dapat mengalami eliminasi HX jika dipanaskan bersama suatu alkoksida.
»»  READMORE...